# Evaluation of Correlation between Phenomenological Approach and Fracture/Mechanics Approach for Asphalt Concrete Fatigue Performance

Qiang Li, SRA Navneet Garg, FAA Monir Haggag, SRA 08/05/2014

lonesty and Servic



#### Introduction

- Two categories of laboratory approaches for fatigue resistance evaluation:
  - > Phenomenological Approach
  - > Fracture mechanics Approach

# Phenomenological Approach

 Use repeated strain or stress to simulate the repeated traffic load.



- > Time-consuming
- High variation



# Fracture mechanics Approach

 Fracture mechanic approach focuses on the cracking initiation and propagation. This method relates fatigue performance to the various materials fracture parameters.





#### **Objective**

- Evaluate the relationship between phenomenological approach and fracture mechanics approach.
- Characterize the fatigue behavior using fracture parameters
  - Phenomenological Approach:
    Flexural Beam Fatigue
  - Facture Mechanics Approach:
     Disk-Shaped Compact Tension (DCT)
     Indirect Tensile Test (IDT)

#### Flexural Beam Fatigue

- Two Failure Criteria
- ➤ Nf: Number of the cycles when the stiffness reduces to 50% of the initial stiffness

Plateau Value: Ratio of dissipated energy change

(RDEC) at Nf

II III

Plateau Value

Load Cycles





#### IDT

 Dissipated creep strain energy (DCSE) and Fracture Energy (FE) which are two thresholds related to cracking initiation.







#### DCT

 Fracture Energy = Area under Load-CMOD Curve/Area of Fracture Surface.





# **Test Program**

- Two aggregates
  - > NAPTF
  - > JFK
- Two Binders
  - > PG70-22
  - > PG76-22

| Test                  | Strains               | Temperature | Replicates | Total Samples |
|-----------------------|-----------------------|-------------|------------|---------------|
| Flexural Beam Fatigue | 300, 600 and<br>900με | 15°C        | 3          | 36            |
| IDT                   | N/A                   | 15°C        | 3          | 12            |
| DCT                   | N/A                   | 10°C        | 3          | 12            |

# Flexural Beam Fatigue Test Results





#### **IDT and DCT Results**







# **IDT vs Beam Fatigue**





# **IDT vs Beam Fatigue**





### **DCT vs Beam Fatigue**





### **DCT vs Beam Fatigue**





#### Summary

- Nf and PV of asphalt concrete were determined using beam fatigue test. The DCSE and FE were obtained using IDT test and DCT test separately.
- A strong correlation is observed between DCSE and Nf and also between DCSE and PV. The correlation is more significant at low strain level.
- Mixes with high DCSE has high Nf and low PV.
- There is a higher correlation at 300 micro strain between FE and Nf as well as between FE and PV.



# THANKS





#### **Outline**

- Introduction
- Objective
- Laboratory Tests
- Result and Discussion
- Summary